Telomere Maintenance Requires the RAD51D Recombination/Repair Protein
نویسندگان
چکیده
The five RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3) are required in mammalian cells for normal levels of genetic recombination and resistance to DNA-damaging agents. We report here that RAD51D is also involved in telomere maintenance. Using immunofluorescence labeling, electron microscopy, and chromatin immunoprecipitation assays, RAD51D was shown to localize to the telomeres of both meiotic and somatic cells. Telomerase-positive Rad51d(-/-) Trp53(-/-) primary mouse embryonic fibroblasts (MEFs) exhibited telomeric DNA repeat shortening compared to Trp53(-/-) or wild-type MEFs. Moreover, elevated levels of chromosomal aberrations were detected, including telomeric end-to-end fusions, a signature of telomere dysfunction. Inhibition of RAD51D synthesis in telomerase-negative immortalized human cells by siRNA also resulted in telomere erosion and chromosome fusion. We conclude that RAD51D plays a dual cellular role in both the repair of DNA double-strand breaks and telomere protection against attrition and fusion.
منابع مشابه
Telomere Maintenance Requires the RAD 51 D Recombination / Repair Protein the absence of telomerase , telomeres shorten
متن کامل
Recombination-based telomere maintenance is dependent on Tel1-MRN and Rap1 and inhibited by telomerase, Taz1, and Ku in fission yeast.
Fission yeast cells survive loss of the telomerase catalytic subunit Trt1 (TERT) through recombination-based telomere maintenance or through chromosome circularization. Although trt1Delta survivors with linear chromosomes can be obtained, they often spontaneously circularize their chromosomes. Therefore, it was difficult to establish genetic requirements for telomerase-independent telomere main...
متن کاملThe interaction profile of homologous recombination repair proteins RAD51C, RAD51D and XRCC2 as determined by proteomic analysis.
The RAD51 family of proteins is involved in homologous recombination (HR) DNA repair and maintaining chromosome integrity. To identify candidates that interact with HR proteins, the mouse RAD51C, RAD51D and XRCC2 proteins were purified using bacterial expression systems and each of them used to co-precipitate interacting partners from mouse embryonic fibroblast cellular extracts. Mass spectrosc...
متن کاملRTEL1 contributes to DNA replication and repair and telomere maintenance
Telomere maintenance and DNA repair are important processes that protect the genome against instability. mRtel1, an essential helicase, is a dominant factor setting telomere length in mice. In addition, mRtel1 is involved in DNA double-strand break repair. The role of mRtel1 in telomere maintenance and genome stability is poorly understood. Therefore we used mRtel1-deficient mouse embryonic ste...
متن کاملThe ATPase motif in RAD51D is required for resistance to DNA interstrand crosslinking agents and interaction with RAD51C.
Homologous recombination (HR) is a mechanism for repairing DNA interstrand crosslinks and double-strand breaks. In mammals, HR requires the activities of the RAD51 family (RAD51, RAD51B, RAD51C, RAD51D, XRCC2, XRCC3 and DMC1), each of which contains conserved ATP binding sequences (Walker Motifs A and B). RAD51D is a DNA-stimulated ATPase that interacts directly with RAD51C and XRCC2. To test t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 117 شماره
صفحات -
تاریخ انتشار 2004